Abstract

We present theoretical and experimental analyses of the critical condition where the inertial–buoyancy or viscous–buoyancy regime is preserved in a uniform-density gravity current (which propagates over a horizontal plane) of time-variable volume ${\mathcal{V}}=qt^{\unicode[STIX]{x1D6FF}}$ in a power-law cross-section (with width described by $f(z)=bz^{\unicode[STIX]{x1D6FC}}$, where $z$ is the vertical coordinate, $b$ and $q$ are positive real numbers, and $\unicode[STIX]{x1D6FC}$ and $\unicode[STIX]{x1D6FF}$ are non-negative real numbers) occupied by homogeneous or linearly stratified ambient fluid. The magnitude of the ambient stratification is represented by the parameter $S$, with $S=0$ and $S=1$ describing the homogeneous and maximum stratification cases respectively. Earlier theoretical and experimental results valid for a rectangular cross-section ($\unicode[STIX]{x1D6FC}=0$) and uniform ambient fluid are generalized here to a power-law cross-section and stratified ambient. Novel time scalings, obtained for inertial and viscous regimes, allow a derivation of the critical flow parameter $\unicode[STIX]{x1D6FF}_{c}$ and the corresponding propagation rate as $Kt^{\unicode[STIX]{x1D6FD}_{c}}$ as a function of the problem parameters. Estimates of the transition length between the inertial and viscous regimes are also derived. A series of experiments conducted in a semicircular cross-section ($\unicode[STIX]{x1D6FC}=1/2$) validate the critical values $\unicode[STIX]{x1D6FF}_{c}=2$ and $\unicode[STIX]{x1D6FF}_{c}=9/4$ for the two cases $S=0$ and $1$. The ratio between the inertial and viscous forces is determined by an effective Reynolds number proportional to $q$ at some power. The threshold value of this number, which enables a determination of the regime of the current (inertial–buoyancy or viscous–buoyancy) in critical conditions, is determined experimentally for both $S=0$ and $S=1$. We conclude that a very significant generalization of the insights and results from two-dimensional (rectangular cross-section channel) gravity currents to power-law cross-sections is available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call