Abstract

We present results from an extensive analytic and numerical study of a two-dimensional model of a square array of ultrasmall Josephson junctions. We include the ultrasmall self and mutual capacitances of the junctions, for the same parameter ranges as those produced in the experiments. The model Hamiltonian studied includes the Josephson, $E_J$, as well as the charging, $E_C$, energies between superconducting islands. The corresponding quantum partition function is expressed in different calculationally convenient ways within its path-integral representation. The phase diagram is analytically studied using a WKB renormalization group (WKB-RG) plus a self-consistent harmonic approximation (SCHA) analysis, together with non-perturbative quantum Monte Carlo simulations. Most of the results presented here pertain to the superconductor to normal (S-N) region, although some results for the insulating to normal (I-N) region are also included. We find very good agreement between the WKB-RG and QMC results when compared to the experimental data. To fit the data, we only used the experimentally determined capacitances as fitting parameters. The WKB-RG analysis in the S-N region predicts a low temperature instability i.e. a Quantum Induced Transition (QUIT). We carefully simulations and carry out a finite size analysis of $T_{QUIT}$ as a function of the magnitude of imaginary time axis $L_\tau$. We find that for some relatively large values of $\alpha=E_C/E_J$ ($1\leq \alpha \leq 2.25)$, the $L_\tau\to\infty$ limit does appear to give a {\it non-zero} $T_{QUIT}$, while for $\alpha \ge 2.5$, $T_{QUIT}=0$. We use the SCHA to analytically understand the $L_\tau$ dependence of the QMC results with good agreement between them. Finally, we also carried out a WKB-RG analysis in the I-N region and found no evidence of a low temperature QUIT, up to lowest order in ${\alpha}^{-1}$

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.