Abstract

We report on critical ion implantation and rapid thermal annealing (RTA) process temperatures that produce resistive Fe- or Ga-implanted InGaAsP/InP heterostructures. Two InGaAsP/InP heterostructure compositions, with band gap wavelengths of 1.3μm and 1.57μm, were processed by ion implantation sequences done at multiple MeV energies and high fluence (1015cm−2). The optimization of the fabrication process was closely related to the implantation temperature which influences the type of implant-induced defect structures. With hot implantation temperatures, at 373K and 473K, X-ray diffraction (XRD) revealed that dynamic defect annealing was strong and prevented the amorphization of the InGaAsP layers. These hot-implanted layers were less resistive and RTA could not optimize them systematically in favor of high resistivity. With cold implantation temperatures, at 83K and even at 300K, dynamic annealing was minimized. Damage clusters could form and accumulate to produce resistive amorphous-like structures. After recrystallization by RTA, polycrystalline signatures were found on every low-temperature Fe- and Ga-implanted structures. For both ion species, electrical parameters evolved similarly against annealing temperatures, and resistive structures were produced near 500°C. However, better isolation was obtained with Fe implantation. Differences in sheet resistivities between the two alloy compositions were less than band gap-related effects. These observations, related to damage accumulation and recovery mechanisms, have important implications for the realization ion-implanted resistive layers that can be triggered with near infrared laser pulses and suitable for ultrafast optoelectronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call