Abstract

The critical pitting temperature (CPT) of selective laser melted (SLM) 316 L stainless steel in 1.0 M NaCl was measured and compared with a commercial wrought alloy. Potentiostatic measurements determined a mean CPT value of 16 ± 0.7 °C, 27.5 ± 0.8 °C and 31 ± 1 °C for the wrought alloy, the SLM alloy normal to the build direction and parallel to the build direction, respectively. The lead-in pencil electrode technique was used to study the pit chemistry of the two alloys and to explain the higher CPT values observed for the SLM alloy. A lower critical current density required for passivation in a simulated pit solution was measured for the SLM alloy. Moreover, the ratio of the critical concentration to saturated concentration of dissolving metal cations was found to be higher for the SLM alloy, which was related to its different salt film properties, possibly as a result of the SLM’s distinct microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.