Abstract

Maintaining constant gate control is important for ensuring accurate MOSFET adjustment of drive strength by changing its size. In the negative capacitance field-effect transistor (NCFET), the nonuniform distribution of ferroelectric polarization and capacitance match are sensitive to the size and tend to increase the fluctuation of gate control. In the current work, a detailed simulation of an NC-FinFET was carried out to clarify the effect of structural factors on its gate control. These factors include the fin structure (length, width, and height), the doping concentration in the GaAs channel, and the ferroelectric film thickness. Simulation results indicate that the subthreshold swing (SS) of an NC-FinFET with a complex oxide 0.85BiTi0.1Fe0.8Mg0.1O3-0.15CaTiO3 (BTFM-CTO) film is less sensitive to the variation in structural factors than that with HfO2 or PZT film. Thus, the fluctuation in gate control can be significantly ameliorated with a suitable set of structural factors and ferroelectric parameters. The current work generates new insights into the fluctuation of gate control with varying structural factors and adjustment of NC-FinFET drive strength, which are essential for the application of the NC-FinFET in analog circuits. This manuscript was edited for English language/grammar. Some of the text was difficult to interpret.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.