Abstract

This study investigates the influence of several material properties underlying the failure mechanism of high-strength concrete (HSC) under uniaxial compression. An experimental-numerical characterization of a single inclusion block (SIB) – an idealized composite comprising of a granite cylindrical core embedded within a high-strength mortar (HSM) matrix – is first carried out. Parametric studies are next conducted with the calibrated SIB model, to identify the critical parameters governing the failure of the idealized composite. The qualitative understanding obtained from the SIB is then utilized to design a series of experiments, exploring the extent of influence of the identified critical parameters on the compressive strength of HSC. Complementary experimental data in literature are also examined. For the range of specimens considered, it is found that the lateral strain capacity of mortar matrix has the most influence on the compressive strength of HSC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.