Abstract

The glucose transporter of Trypanosoma brucei was reconstituted by incorporating Escherichia coli phospholipid liposomes into detergent-solubilised trypanosome membranes. Proteoliposome vesicles were formed by detergent dilution and used in glucose-uptake assays. The minima for functional reconstitution of the glucose transporter were established and used to probe the mechanism of glucose transport. The uptake pattern of radiolabelled glucose showed a counterflow transient at about 3 s, after which the sugar equilibrated across the proteoliposomal membrane. This observation is consistent with a facilitated transporter. There was a six-fold increase in the initial rate of glucose uptake compared to non-reconstituted or native membranes. In addition, the transporter exhibited stereospecificity to D-glucose but poorly transported L-glucose. Directionality, stereoselectivity or substrate specificity and cis-inhibition by phloridzin were therefore the main criteria for validation of glucose transport. The observed counterflow transient also provided further evidence for a facilitated glucose transporter within the trypanosome plasma membrane, and was the single most important criterion for this assertion. A stoichiometry of 0.78 mol of glucose per mol of transporter was estimated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.