Abstract

Monte Carlo simulations were performed to study the influence of critical nucleus size on nanoparticle formation in microemulsions. It was found that critical nucleus size strongly affected nucleation and growth rates, as well as final nanoparticle sizes. An increase of critical nucleus leads to a slower nucleation process. In contrast, it gives rise to acceleration of the growth process. Final nanoparticle sizes increase as the critical nucleus value increases. It is predicted that this dependence will be less pronounced when a high reactant concentration is used. We have compared the simulation results with experimental data taken from different authors. Good agreement between the two kinds of results supports the conclusions of this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.