Abstract
Phospholipids in biological membranes establish a chemical equilibrium between free phospholipids in the aqueous phase (CMC) and self-assembled phospholipids in vesicles, keeping the CMC constant. The CMC is different for each phospholipid, depends on the amount of cholesterol, and, according to the lipid-chaperone hypothesis, controls the interaction between free phospholipids and amyloidogenic proteins (such as amylin, amyloid-β, and α-synuclein, all of which are, respectively, associated with a different proteinopathy), which governs the formation of a toxic complex between free lipids and proteins that leads to membrane destruction. Here, we provide quantitative measurements of CMCs and bilayer stability of pure phospholipids, lipid rafts, and their mixture with cholesterol by fluorescence methods (using pyrene as a probe) and light scattering techniques (resonance Rayleigh scattering and fixed-angle light scattering) performed on LUVs, as well as AFM to measure LUV dimensions. Also, we test the lipid-chaperone hypothesis on human IAPP interacting with different mixture of POPC cholesterol. Stated the importance of CMC in membrane stability and protein aggregation processes, these results could be a starting point for the development of a quantitative kinetic model for the lipid chaperone hypothesis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have