Abstract

We explore a particular approach to the analysis of dynamical and geometrical properties of autonomous, Pfaffian non-holonomic systems in classical mechanics. The method is based on the construction of a certain auxiliary constrained Hamiltonian system, which comprises the non-holonomic mechanical system as a dynamical subsystem on an invariant manifold. The embedding system possesses a completely natural structure in the context of symplectic geometry, and using it in order to understand properties of the subsystem has compelling advantages. We discuss generic geometric and topological properties of the critical sets of both embedding and physical system, using Conley–Zehnder theory, and by relating the Morse–Witten complexes of the ‘free’ and constrained system to one another. Furthermore, we give a qualitative discussion of the stability of motion in the vicinity of the critical set. We point out key relations to sub-Riemannian geometry, and a potential computational application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.