Abstract
The existence of an interlayer has a significant effect on the stability of a rock salt gas storage cavity; therefore, an uncontrollable collapse of the interlayer would cause a series of issues. In this study, three types of mechanical instability criteria are comprehensively calculated. The limit radius of the interlayer is computed under different criteria, and the collapse radius of the interlayer is obtained by comparison. The calculation results of the mathematical model are highly accurate with respect to actual engineering logging data, in general with over 90% of accuracy. It is demonstrated that, besides the physical and mechanical characteristics of the sandwich, the location of the interlayer in the cavity and concentration of the brine also have an important effect on the collapse of the interlayer. The brine at the bottom of the cavity is nearly saturated. Therefore, an interlayer at this location does not easily collapse. The mathematical model established in this study is used in the seismic design and prediction of interlayer collapse during the construction of salt‐cavern gas storage facilities in China.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.