Abstract

Mesoporous SBA-15 (space group p6 mm), KIT-6 ( Ia3 d) and KIT-5 ( Fm3 m) silicas, exhibiting different 2-D and 3-D channel- or cage-like pore structure and pore dimensions have been used as supports for iron oxide nanoparticles. The iron modification of the silica was performed according to a frequently used impregnation technique from aqueous iron nitrate solution. The materials were characterized by nitrogen physisorption, X-ray diffraction, TEM–EDX, Moessbauer spectroscopy, and temperature-programmed reduction (TPR) and tested in the catalytic decomposition of methanol. It is established that the location and dispersion of iron oxide nanoparticles are affected by the pore topology of the support. The most homogeneously dispersed iron oxide nanoparticles are observed using silica host matrix exhibiting a 3-D channel-like structure and pore diameters about 7 nm, and the thus-obtained composites exhibit high catalytic activity and selectivity in methanol decomposition to CO and hydrogen. For all the samples, characterized with a low mesopore volume and small pore diameters/pore entrances, the formation of larger iron oxide particles, mainly located on the outer surface, is observed. Inhomogeneously dispersed iron oxide particles with a large fraction of isolated, strongly interacting with the support, iron species, and possessing low catalytic activity and usually high selectivity to methane, are found for the silicas with relatively larger pores/pore entrances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call