Abstract

A dual polysilicon gate structure is required to increase the circuit speed and the packing density, as well as the low-power operation as the design rule of CMOS scales down to sub- 0.25micrometers . In order to get the superior device performance of 0.18micrometers logic device, we need to do the gate implantation prior to polysilicon etch. The critical dimensions (CD) different between NMOS and PMOS during polysilicon gate etching needs to be reduced for matching the design drive current of NMOS and PMOS. In this work, the pressure, the bias power, the total flow of CF4 and Cl2 and the N2 flow are used for the investigation of 0.18micrometers device during the dual gate etch. After optimizing all etch parameters, the CD offset is small between NMOS and PMOS. The vertical profile, the small bias, and CD micro-loading are obtained using in-situ BARC and polysilicon etching. The result of pitting free, stringers free and notching free after dual polysilicon etching is achieved, and the remaining thickness of deep UV photoresist at shoulder is about 800-880A. From this study, both good performance device and the process controllability are obtained with in-situ bottom anti- reflective coating and dual polysilicon gate etching.© (2000) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.