Abstract

Depletion interactions and the critical Casimir effect are usually regarded as distinct phenomena in colloidal suspensions. By experimentally investigating how the Asakura-Oosawa picture, appropriate for a weakly correlated depletant, is modified when critical correlations develop within the depletion agent, we conversely show that the former merges continuously into the latter, leading to a distinctive scaling behavior solely dictated by the depletant correlation length. A model based on density functional theory provides a microscopic understanding of the phenomenon and properly accounts for the observed trends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.