Abstract

We study numerically the motion of vortices in two-dimensional arrays of resistively shunted Josephson junctions. An extra vortex is created in the ground states by introducing novel boundary conditions and made mobile by applying external currents. We then measure critical currents and the corresponding pinning energy barriers to vortex motion, which in the unfrustrated case agree well with previous theoretical and experimental findings. In the fully frustrated case our results also give good agreement with experimental ones, in sharp contrast with the existing theoretical prediction. A physical explanation is provided in relation with the vortex motion observed in simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.