Abstract
Coated conductor Roebel cables are an effective way to create a high current density, fully transposed cable. However, despite REBCO tapes being robust against transverse stress, the Roebel architecture can concentrate transverse stress in non-trivial and random patterns depending on the exact arrangement of strands. If stands are embedded in a solid media which consolidates all strands then a transverse stress concentration will not occur. We tested this idea through mechanical and thermo-cycling tests on 5 strand Roebel cables. For non-impregnated cable irreversible degradation in critical currents is initiated at transverse pressures in a range of 4–34 MPa. Optical examination of the cables shows stress concentration patterns beyond those predicted by thickness variations. For cables impregnated with epoxy filled with SiO2 nanopowder, which has a similar thermal expansion coefficient to the metallic substrate of the strands, the irreversibility point is increased above our highest experimentally available pressure of 270 MPa. Thermo-cycling experiments confirmed a closely matched thermal expansion coefficient between the embedding media and metallic substrate is critical to avoid wire failures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.