Abstract

In long-distance railways, some particular spans of high-speed railway simply supported beam bridges (HSRSBs) are commonly selected as the target structure. The target structure is the part of interest for the study and intended to be analyzed. Due to longitudinal constraints of the track system, the target structure is tightly coupled with other spans within certain range, and is affected by the coupled spans under longitudinal earthquake condition. A massive amount of time-consuming computation is required to determine the coupling span number using current finite element models. In an effort to overcome this challenge, an equivalent method for the longitudinal constraints of the track system is proposed, which greatly reduces the complexity of finite element model while retaining calculation precision. The coupling span number was determined by seismic analyses of a large number of cases using equivalent finite element models. Moreover, the influence of pier height and bottom pier stiffness on coupling span number was studied. Based on the relationship between the equivalent boundary sensitivity critical point and coupling span number, a method to quickly obtain coupling span number of the target structure in arbitrary HSRSB was constructed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.