Abstract

This study explores the suitability of quasi-static pore-network modeling for simulating the transport of hydrogen in networks with box-shaped pores and square cylinder throats. The dynamic pore-network modeling results are compared with quasi-static pore-network modeling, and a good agreement is observed when the simulations reach steady-state, for a capillary number of Nc≤10−7. This finding suggests that the quasi-static approach can be used as a reliable and efficient method for studying hydrogen transport in similar networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.