Abstract

We present measurements of temperature and magnetic-field dependence of the critical current and excess current in a carbon nanotube Josephson quantum dot junction. The junction is fabricated in a controlled environment which allows for extraction of the full critical current. The measurements are performed in the open quantum dot regime and fitted to theory with good qualitative agreement. We also show how to extract level spacing, level broadening, and charging energy of an open quantum dot from a bias spectroscopy plot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.