Abstract
A basic quantum-mechanical model for wave functions and current flow in open quantum dots or billiards is investigated. The model involves non-Hertmitian quantum mechanics, parity-time (PT) symmetry, and PT-symmetry breaking. Attached leads are represented by positive and negative imaginary potentials. Thus probability densities, currents flows, etc., for open quantum dots or billiards may be simulated in this way by solving the Schrödinger equation with a complex potential. Here we consider a nominally open ballistic quantum dot emulated by a planar microwave billiard. Results for probability distributions for densities, currents (Poynting vector), and stress tensor components are presented and compared with predictions based on Gaussian random wave theory. The results are also discussed in view of the corresponding measurements for the analogous microwave cavity. The model is of conceptual as well as of practical and educational interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.