Abstract

Based on the energy gradient method, criteria for turbulent transition are proposed for pressure driven flow and shear driven flow, respectively. For pressure driven flow, the necessary and sufficient condition for turbulent transition is the presence of the velocity inflection point in the averaged flow. For shear driven flow, the necessary and sufficient condition for turbulent transition is the existence of zero velocity gradient in the averaged flow profile. It is shown that turbulent transition can be effected via a singularity of the energy gradient function which may be associated with the chaotic attractor in dynamic system. The role of disturbance in the transition is also clarified in causing the energy gradient function to approach the singularity. Finally, it is interesting that turbulence can be controlled by modulating the distribution of the energy gradient function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call