Abstract
ABSTRACTIn the present paper, we investigate the hydrodynamic instability of Dean flow under different Dean numbers ranging from 1 to 2500, curvature ratios from 0.0001 up to 1000 and temperatures ranging from 273.15 K to 373.15 K. To study of fluid flow instability, analytical velocity profiles under intended conditions and energy gradient function K in the energy gradient method are evaluated. The results of present study show that, as the curvature ratio increases the flow becomes more stable. Moreover, no regular and significant effects on the energy gradient function K were achieved by increasing of temperatures. We found that, the origin of instability in the entire flow field is located on the inner wall of the parallel curved walls, especially for larger curvature ratios. We also reported the critical value of the energy gradient function K for the onset of instability corresponding to the critical Dean number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.