Abstract

Poly-γ-glutamic acid (γ-PGA) is a decomposable polymer and has been useful in various industries. The biological functions of γ-PGA are closely linked with its molecular weight (MW). In this study, we established an efficient method to produce variable MWs of γ-PGA from renewable biomass (Jerusalem artichoke) by Bacillus amyloliquefaciens. First, a systematic engineering strategy was proposed in B.amyloliquefaciens to construct an optimal platform for γ-PGA overproduction, in which 24.95 g/L γ-PGA generation was attained. Second, 27.12 g/L γ-PGA with an MW of 20-30 kDa was obtained by introducing a γ-PGA hydrolase (pgdS) into the platform strain constructed above, which reveals a potential correlation between the expression level of pgdS and MW of γ-PGA. Then, a Clustered Regularly Interspaced Short Palindromic Repeats interference (CRISPRi) system was further designed to regulate pgdS expression levels, resulting in γ-PGA with variable MWs. Finally, a combinatorial approach based on three sgRNAs with different repression efficiencies was developed to achieve the dynamic regulation of pgdS and obtain tailor-made γ-PGA production in the MW range of 50-1400 kDa in one strain. This study illustrates a promising approach for the sustainable making of biopolymers with diverse molecular weights in one strain through the controllable expression of hydrolase using the CRISPRi system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.