Abstract

Acidithiobacillus ferrooxidans is an iron-oxidizing chemolithotroph used for bioleaching of precious metals and is also regarded as a potential host for bioelectrochemical production of value-added chemicals. Despite its industrial utility, however, it is difficult to genetically engineer A.ferrooxidans due to low transformation and recombination efficiencies. Here, we developed a clustered regularly interspaced short palindromic repeats interference (CRISPRi) system that can selectively repress the expression of a target gene in A.ferrooxidans. The mutated gene encoding a nuclease-deactivated Cas9 protein was cloned into the broad-host-range plasmid pBBR1-MCS2, and the applicability of the CRISPRi system was examined using the nitrogenase nifH gene as a knockdown target. Introduction of the CRISPRi plasmid into A.ferrooxidans resulted in decreased nifH transcription and retarded cell growth in the absence of nitrogen sources, demonstrating that the CRISPRi system altered the phenotype of this bacterium via selective gene knockdown. We suggest that the CRISPRi system developed in this study provides an efficient technique for constructing A.ferrooxidans knockdown mutants that are useful for the genetic dissection of this bacterium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call