Abstract

The CRISPR-Cas9 gene editing system has taken the biomedical science field by storm, initiating rumors about future Nobel Prizes and heating up a fierce patent war, but also making significant scientific impact. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), together with CRISPR-associated proteins (Cas) are a part of the prokaryotic adaptive immune system and have successfully been repurposed for genome editing in mammalian cells. The CRISPR-Cas9 system has been used to correct genetic mutations and for replacing entire genes, opening up a world of possibilities for the treatment of genetic diseases. In addition, recently some new CRISPR-Cas systems have been discovered with interesting mechanistic variations. Despite these promising developments, many challenges have to be overcome before the system can be applied therapeutically in human patients and enabling delivery technology is one of the key challenges. Furthermore, the relatively high off-target effect of the system in its current form prevents it from being safely applied directly in the human body. In this review, the transformation of the CRISPR-Cas gene editing systems into a therapeutic modality will be discussed and the currently most realistic in vivo applications will be highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.