Abstract

Given the highly mutagenic and carcinogenic nature of Aflatoxin M1 (AFM1), the quantity assessment of AFM1 residues in milk and dairy products is necessary to maintain consumer health and food safety. Herein, CRISPR-Cas12a-based colorimetric aptasensor was developed using the catalytic activity of flower-like nanozymes of MnO2 and trans-cleavage property of CRISPR-Cas12a system to quantitatively detect AFM1. The basis of the developed colorimetric aptasensor relies on whether or not the CRISPR-Cas12a system is activated, as well as the contrast in oxidase-mimicking capability exhibited by flower-like MnO2 nanozymes when AFM1 is absent or present. When AFM1 is not present in the sample, single-stranded DNA (ssDNA) is degraded by the activated CRISPR-Cas12a, and the solution turns into yellow due to the catalytic activity of the nanozymes. While, in the attendance of AFM1, ssDNA degradation does not occur due to the inactivation of the CRISPR-Cas12a. Therefore, with the adsorption of the ssDNA on the MnO2 nanozymes, their catalytic activity decreases, and the solution color becomes pale yellow due to less oxidation of the chromogenic substrate. In this aptasensor, the relative absorbance changes increased linearly from 6 to 160 ng L−1, and the detection limit was 2.1 ng L−1. The developed aptasensor displays a selective detection performance and a practical application for quantitative analysis of AFM1 in milk samples. The results of the introduced aptasensor open up the way to design other selective and sensitive aptasensors for the detection of other mycotoxins by substitution of the used sequences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call