Abstract

Current nucleic acid-responsive DNA hydrogels face significant challenges, such as the requirement for high target concentrations, frequent redesigns, and increased costs, which limit their practical applications in biosensing. To address these issues, we developed a novel biosensing platform integrating a CRISPR/Cas12a system into an RCA-based DNA hydrogel. The hydrogel used in the platform could preencapsulate diverse signal molecules comprising GelRed, methylene blue, and gold nanoparticles, which were released upon Cas12a-mediated cleavage. This design enabled customizable signal output, including fluorescence, electrochemistry, and colorimetry, thereby ensuring the platform's adaptability to various detection scenarios. Our platform was highly specific for methicillin-resistant Staphylococcus aureus, with a mecA gene detection limit of 10 copies/μL, and provided fast and accurate results within 2 h for clinical samples. Hence, based on these advantages, the proposed biosensing platform exhibits promising application prospects in the field of nucleic acid detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.