Abstract
DNA hydrogels, which take advantage of the unique properties of functional DNA motifs, such as specific molecular recognition, programmable and high-precision assembly, multifunctionality, and excellent biocompatibility, have attracted increasing research interest in the past two decades in diverse fields, especially in biosensing and biomedical applications. The responsiveness of smart DNA hydrogels to external stimuli by changing their swelling volume, crosslinking density, and optical or mechanical properties has facilitated the development of DNA-hydrogel-based in vitro biosensing systems and actuators. Furthermore, reducing the sizes of DNA hydrogels to the micro- and nanoscale leads to better responsiveness and delivery capacity, thereby making them excellent candidates for rapid detection, in vivo real-time sensing, and drug release applications. Here, the recent progress in the development of smart DNA hydrogels and DNA microgels for biosensing and biomedical applications is summarized, and the current challenges as well as future prospects are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.