Abstract

Aspergillus oryzae has great potential and competitive advantages to be developed as an excellent expression system, owing to its powerful protein secretion ability, complex post-translational modification, and safety characteristics. However, the low efficiency of genetic modification and gene function analysis is an urgent problem to be solved in A. oryzae and other filamentous fungal systems. Therefore, establishing efficient genetic transformation and multiplexed genome editing tools is significant for developing A. oryzae expression systems, and revealing its intrinsic mechanisms. In this study, the high-efficiency transformation of A. oryzae was achieved by optimizing the preparation conditions of protoplasts, and the random editing efficiency of the CRISPR/Cas9 system in A. oryzae for single and double genes reached 37.6% and 19.8%, respectively. With the aid of the selection marker, such as color or resistance, the editing efficiency of single and double genes can reach 100%. Based on the developed CRISPR/Cas9 genome editing method, the heterologous lipase gene (TLL) achieves precise integration at different genetic loci in one step. The efficient and accurate acquisition of positive transformants indicated that the morphological gene yA could be used as a helpful selection marker for genome editing in A. oryzae. In conclusion, the developed system improves the efficiency of transformation and multiplexed genome editing for A. oryzae. It provides a practical method for developing the A. oryzae high-efficiency expression system for heterologous proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call