Abstract

Spray-induced gene silencing represents an eco-friendly approach for crop protection through the use of double-stranded RNA (dsRNA) to activate the RNA interference (RNAi) pathway, thereby silencing crucial genes in pathogens. The major challenges associated with dsRNA are its limited stability and poor cellular uptake, necessitating repeated applications for effective crop protection. In this study, RNA nanoparticles (NPs) were proposed as effectors in plants and pathogens by inducing the RNAi pathway and silencing gene expression. RNA structural motifs, such as hairpin-loop, kissing-loop, and tetra-U motifs, were used to link multiple siRNAs into a long, single-stranded RNA (lssRNA). The lssRNA, synthesized in Escherichia coli, self-assembled into stable RNA nanostructures via local base pairing. Comparative analyses between dsRNA and RNA NPs revealed that the latter displayed superior efficacy in inhibiting spore germination and mycelial growth of Botrytis cinerea. Moreover, RNA NPs had a more robust protective effect on plants against B. cinerea than did dsRNA. In addition, RNA squares are processed into expected siRNA in plants, thereby inhibiting the expression of the target gene. These findings suggest the potential of RNA NPs for use in plant disease control by providing a more efficient and specific alternative to dsRNA without requiring nanocarriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.