Abstract

The RNA-guided CRISPR–Cas9 nuclease has revolutionized genome engineering, yet its mechanism for DNA target selection is not fully understood. A crucial step in Cas9 target recognition involves unwinding of the DNA duplex to form a three-stranded R-loop structure. Work reported here demonstrates direct detection of Cas9-mediated DNA unwinding by a combination of site-directed spin labeling and molecular dynamics simulations. The results support a model in which the unwound nontarget strand is stabilized by a positively charged patch located between the two nuclease domains of Cas9 and reveal uneven increases in flexibility along the unwound nontarget strand upon scissions of the DNA backbone. This work establishes the synergistic combination of spin-labeling and molecular dynamics to directly monitor Cas9-mediated DNA conformational changes and yields information on the target DNA in different stages of Cas9 function, thus advancing mechanistic understanding of CRISPR–Cas9 and aiding future technological ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.