Abstract

Solving the polysulfide shuttle problem is one of the core challenges for the industrialization of lithium-sulfur batteries. In this work, a triphasic composite of LDH/sulfur/rGO (LDH: layered double hydroxide, rGO: reduced graphene oxide) with a crepe cake like structure is designed and fabricated as a positive electrode material for lithium-sulfur batteries. Sulfur nanoparticles are embedded in the interlayer space of the composite and thus are well protected physically via three-dimensional wrapping and chemically via strong interaction of LDH nanoflakes with lithium polysulfides, such as ionic bonds and S···H hydrogen bonds. In addition, the flexible lamellar structure of the composite with soft graphene layers can tolerate the volume expansion of sulfur during lithiation as well as facilitate ionic permeability and electron transport, which is favorable for the redox reactions of polysulfide. The present work sheds light on the future development and industrialization of lithium-sulfur batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.