Abstract
Intermediate temperature creep properties are considered a key indicator of single crystal superalloys used for turbine blades of aircraft engines. The interrupted and ruptured creep tests were carried out in a second generation single crystal superalloy under the conditions of 760°C/785MPa. The creep rupture life as well as minimum creep rate were also in the same level of those in CMSX-4 and PWA1484. The microstructural evolution at different creep stages were analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed the γ’ phases kept the cuboid morphology mostly until the creep rupture, and super lattice stacking faults (SSFs) extended along [-1 1 0] and [-1-1 0] orientations within the γ’ precipitate were the typical dislocation configuration.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have