Abstract

Abstract We present detailed analyses of dwell characteristics of various waveforms of creep fatigue interaction tests performed on the nickel-based superalloy IN 718. We discuss the effects of different dwell modes (strain, stress, and mixed) on creep fatigue properties. Strain dwell tests cause relaxation/accumulation of the mean stress, and stress dwell tests cause accumulation/relaxation of mean strain. True interaction of strain-controlled low cycle fatigue and creep takes place when stress-controlled dwell has been introduced within a strain-controlled cycling. In this article, the effects of pure and mixed modes have been compared in terms of the creep strain accumulation rate at dwell positions. It has been found, irrespective of creep and fatigue, that there is also a second competitive process that goes on, like tensile strain accumulation and compressive strain accumulation. These two processes compete with each other and show a difference in evolution with cycles. Mean strain rates for different stress and mixed control tests have also been determined; by comparing the creep strain accumulation rate and plastic strain rate, the competition of creep and fatigue processes has also been demonstrated in this article. The mechanism of cracking and cavity formation has also been illustrated by computed microtomography and subsequent fractography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.