Abstract

Virtual methods of predicting creep crack growth (CCG), using finite element analysis (FE), are implemented in a compact tension specimen, C(T). The material examined is an austenitic type 316H stainless steel at 550 °C, which exhibits power-law creep–ductile behaviour. A local damage-based approach is used to predict crack propagation and the CCG rate data are correlated with the C ∗ parameter. Two-dimensional elastic–plastic–creep analyses are performed under plane stress and plane strain conditions. Finite element CCG rate predictions are compared to experimental data and to the NSW and modified NSW (NSW–MOD) CCG models’ solutions, which are based on ductility exhaustion arguments. An alternative version of the NSW–MOD model is presented for direct comparison with the FE implementation. The FE predictions are found to be in agreement with the appropriate analytical solutions, and follow the trends of the experimental data at high C ∗ values. Accelerated cracking behaviour is observed experimentally at low C ∗ values, which is consistent with the standard plane strain NSW–MOD prediction. The FE model may be developed to predict this accelerated cracking at low C ∗ values so that the trends between CCG rates at high and low C ∗ values may be determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.