Abstract
Poplar laminated veneer lumber (LVL) orthogonal rib box floor is a new type of floor composed of orthogonal LVL rib beams and oriented strand board (OSB). To study the creep performance of the box floor, four 3600 mm × 4800 mm floor specimens were designed and manufactured. The creep tests of the box floor with local damage, repeated load, and different stress ratio loads were conducted. The creep of the floor increased with ambient temperature and humidity. Because of the local damage of the box floor, the creep increased. Repeated loading increased the creep deformation of the floor, and increasing the load accelerated the creep of the floor. Combined with the creep mechanism of wood materials, a creep theoretical calculation formula of the box floor with LVL orthogonal ribs was established. Comparing the creep model analysis with the test data, it was found that the modified Burger mode can well simulate the creep performance of LVL box floor. Therefore, the modified Burger model can be used to calculate the creep deformation of the box floor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.