Abstract

High temperature tensile–creep behavior of Mg–4Y–2.3Nd–1Gd–0.6Zr (wt%, WE43(T6)) alloy at 523–573 K was investigated. The creep stress exponent is equal to 4.6, suggesting the underlying dislocation creep mechanism. The activation energy is (199 ± 23) kJ/mol, which is higher than that for self-diffusion in Mg and is believed to be associated with precipitates coarsening or cross slip. The creep mechanism is further suggested to be dislocation climb at 523 K, while a cross slip at 573 K is possible. The metastable β′ and β1 phases in the WE43(T6) alloy were relatively thermal stable at 523 K and could be effective to hinder the dislocation climb, which contributed to its excellent creep resistance. However, at 573 K it readily transforms into equilibrium βe phase and coarsens within two hours, thereby causing a decrease of creep resistance. In addition, precipitate free zones approximately normal to applied stress direction (directional PFZs) developed during the creep deformation, especially at 573 K. Those zones became preferential sites to nucleate, extend and connect microcracks and cavities, which lead to the intergranular creep fracture. Improving the thermal stability of precipitates or introducing thermally stable fine plate-shaped precipitates on the basal planes of Mg matrix could enhance the high temperature creep resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.