Abstract

Abstract Natural plant fiber-reinforced polymer composites (PFRP) have emerged as an environmental-friendly material in the construction industry, but their creep behavior is a critical concern for load-bearing structures. This study investigates the creep behavior of flax fiber-reinforced polymer composites (FFRP) using the time–temperature superposition principle (TTSP). Due to the application of TTSP on the tensile creep behavior of FFRP is not fully understood, three potential methods for calculating the critical parameters during TTSP are compared to obtain an efficient application method to build the creep master curve. A 2,000-h long-term creep test is conducted parallelly on the same sample to validate the accuracy of the creep analysis results. The study proposes an ideal method to determine the key parameters in TTSP, providing valuable insights for the practical application of PFRP in the construction industry. Meanwhile, the research results in this study would be helpful in better understanding the creep behavior of FFRP via short-term accelerated tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.