Abstract

Growing problem of card payment fraudulent abuse is a main focus of banks and payment Service Providers (PSPs). This study is using naive Bayes, C4.5 decision tree and bagging ensemble machine learning algorithms to predict outcome of regular and fraud transactions. Performance of algorithms is evaluated through: precision, recall, PRC area rates. Performance of machine learning algorithms PRC rates between 0,999 and 1,000 expressing that these algorithms are quite good in distinguishing binary class 0 in our data set. Amongst all algorithms best performing PRC class 1 rate has Bagging with C4.5 decision tree as base learner with rate of 0,825. For prediction of fraud transactions with success of 92,74% correctly predicted with C4.5 decision tree algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.