Abstract
Given the escalating prevalence of electromagnetic pollution, there is an urgent need for the development of high-performance electromagnetic interference (EMI) shielding materials. Herein, wood-based electromagnetic shielding materials have gained significant popularity due to their exceptional performance as building materials. In this study, a novel wood-based composite with electromagnetic shielding properties is developed. Through the in situ growth of zeolitic imidazolate framework-8 (ZIF-8) crystals on wood fibers, coupled with uniform integration of carbon nanotubes (CNTs), a multifunctional composite named ZIF-8/Poplar-CNT composite is synthesized via a one-step thermoforming process. The incorporation of CNTs endows the composites with excellent EMI shielding effectiveness (EMI SE). Among these elements, despite ZIF-8 crystals not possessing intrinsic electromagnetic shielding functionality, their distinctive dodecahedral structure proves adept at scattering and reflecting electromagnetic waves within the composites, further improving the electromagnetic shielding effect. Hence, the ZIF-8/Poplar-CNT composite (56.95dB) has ≈10dB higher EMI SE compared to that of the composites without ZIF-8 crystals. Meanwhile, ZIF-8 crystals endow the materials with excellent tensile strength (54.84MPa, enhanced by 4 times). Moreover, the introduction of Zn2+ provides superior antibacterial properties. The potential applications of ZIF-8/Poplar-CNT composites extend to diverse areas such as building decoration, electronic products, and medical equipment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.