Abstract

We measured photoemission spectra for a number of insulators (CsI, Diamond, SiO2, CeF3) excited by femtosecond Ti-Sapphire laser pulses at peak intensities, from 0.5 to 6 TW/cm2, which are at least one order of magnitude below the optical breakdown threshold. An intense and pronounced plateau of high energy electrons appears in the photoelectron spectra in this intensity range, which extends up to 30-40 eV at the highest intensities, which we used. The excitation of electrons at high energies is treated in terms of direct interbranch transitions in the conduction band of insulator. These processes are described using calculations based on numerical solution of time dependant Schrodinger equation (TDSE) for Bloch electrons in electric fields. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call