Abstract
Mapping the paths that stem and progenitor cells take en route to differentiate and elucidating the underlying molecular controls are key goals in developmental and stem cell biology. However, with population level analyses it is difficult - if not impossible - to define the transition states and lineage trajectory branch points within complex developmental lineages. Single-cell RNA-sequencing analysis can discriminate heterogeneity in a population of cells and even identify rare or transient intermediates. In this review, we propose that using these data, one can infer the lineage trajectories of individual stem cells and identify putative branch points. Clonal lineage tracing of stem cells allows one to define the outcome of differentiation. Integrating these single cell-based approaches provides a robust strategy for establishing and testing models of how an individual stem cell changes through time to differentiate and self-renew.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have