Abstract

Tropical cyclones (TC) are extreme weather phenomena that bring heavy disasters to humans. Existing forecasting techniques contain computationally intensive dynamical models and statistical methods with complex inputs, both of which have bottlenecks in intensity forecasting, and we aim to create data-driven methods to break this forecasting bottleneck. The research goal of my PhD topic is to introduce novel methods to provide accurate and trustworthy forecasting of TC by developing interpretable machine learning models to analyze the characteristics of TC from multiple sources of data such as satellite remote sensing and observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.