Abstract

Robust Ru-based thin films are successfully fabricated by single- (SA) and multiple-annealing (MA) thermal decomposition methods and are utilized as high-performance electrodes for the supercapacitors. Two critical parameters, the annealing temperature and treatment duration, are engineered for synthesizing stable thin-film electrodes. It is found that the SA thermal decomposition technique at 250 °C for 6 h results in stable RuO2 electrodes with remarkable electrochemical performance. The MA approach consists of 2- and 3-stage thermal treatment steps. The maximal capacitance of MA-treated capacitor reaches as high as 308.8 F g−1. The MA-treated electrodes deliver exceptional rate capability as well as superior cycling stability (93% capacitance retention upon 2000 cycles). The enhanced performance is attributed to the multistep thermal stages along with the layer-by-layer deposition, enabling enhanced heat transfer to individual thin layers. An optimal thermal treatment procedure is assessed empowering enhanced capacitive performance due to high hydrous RuO2·xH2O ratio, reduced crystalline structure, facile electrolyte wetting, and stable adhesion between the deposits and the Ti substrate. The robust design of MA-treated thin film deposits paves the way for synthesizing high-performance electrodes for the supercapacitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.