Abstract

We aim to create deterministic collisions between orbiting bodies by applying a time-dependent external force to one or both bodies, whether the bodies are mutually repulsive, as in the two- or multi-electron atomic case or mutually attractive, as in the planetary-orbit case. Specifically, we have devised a mathematical framework for causing deterministic collisions by launching an inner orbiting body to a higher energy such that this inner body is guaranteed to collide with the outer body. Our method first expresses the problem mathematically as coupled nonlinear differential equations with a time-dependent driving force and solves to find a feasible solution for the force function. Although our calculation is based strictly on classical physics, our approach is suitable for the case of helium with two highly excited electrons and is also valid for creating collisions in the gravitational case such as for our solar system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.