Abstract

A Skyrmion crystal typically arises from helical spin structures induced by the Dzyaloshinskii-Moriya interaction. Experimentally its physical exploration has been impeded because it is a rarity and is found only within a narrow temperature and magnetic field range. We present a method for the assembly of a two-dimensional Skyrmion crystal based upon a combination of a perpendicularly magnetized film and nanopatterned arrays of magnetic vortices that are geometrically confined within nanodisks. The practical feasibility of the method is validated by micromagnetic simulations and computed Skyrmion number per unit cell. We also quantify a wide range in temperature and field strength over which the Skyrmion crystal can be stabilized without the need for any intrinsic Dzyaloshinskii-Moriya interactions, which otherwise is needed to underpin the arrangement as is the case in the very few known Skyrmion crystal cases. Thus, our suggested scheme involves a qualitative breakthrough that comes with a substantial quantitative advance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.