Abstract

An interactive and intuitive way of designing lighting around a model is desirable in many applications. In this paper, we present a tool for interactive inverse lighting in which a model is rendered based on sketched lighting effects. To specify target lighting, the user freely sketches bright and dark regions on the model as if coloring it with crayons. Using these hints and the geometry of the model, the system efficiently derives light positions, directions, intensities and spot angles, assuming a local point-light based illumination model. As the system also minimizes changes from the previous specifications, lighting can be designed incrementally. We formulate the inverse lighting problem as that of an optimization and solve it using a judicious mix of greedy and minimization methods. We also map expensive calculations of the optimization to graphics hardware to make the process fast and interactive. Our tool can be used to augment larger systems that use point-light based illumination models but lack intuitive interfaces for lighting design, and also in conjunction with applications like ray tracing where interactive lighting design is difficult to achieve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call