Abstract

All spacecraft in low orbit are subject to hypervelocity impact by meteoroids and space debris, which can in turn lead to significant damage and catastrophic failure. In order to simulate and study the hypervelocity impact of space debris on spacecraft through hypervelocity impact on AL-Whipple shield, a two-stage light gas gun was used to launch 2017-T4 aluminum alloy sphere projectiles. The projectile diameters ranged from 2.51mm to 5.97mm and impact velocities ranged from 0.69km/s to 6.98km/s. The modes of crater distribution on the rear wall of AL-Whipple shield by hypervelocity impact of AL-spheres in different impact velocity ranges were obtained. The characteristics of the crater distribution on the rear wall were analyzed. The forecast equations for crater distribution on the rear wall of AL-Whipple shield by normal hypervelocity impact were derived. The results show that the crater distribution on the rear wall is a circular area. As projectile diameter, impact velocity and shielding spacing increased, the area of crater distribution increased. The critical fragmentation velocity of impact projectile is an important factor affecting the characteristics of the crater distributions on the rear wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.