Abstract

The objective of this paper is to present an analytical model for the crashworthiness analysis of plane lock gates impacted by river ships. The model is able to assess the indentation by the colliding ship at impact point, to detect possible failure in impact vicinity and to estimate the actions on gate bearings. These latter are calculated by assuming the crash to a quasi-static load, and linear reactions distributions along the bearings. The gate geometry, the bow shape of the colliding ship, its initial velocity and the impact location on the gate, are taken into account. The ships are assumed to be quite rigid with respect to the gate. The modeling has been developed with Matlab. Results of impact of one given lock gate with two different ships: a passenger vessel and a carrier, are compared with FEM results. Impact forces and maximum indentation are well matched. Actions on bearings can be locally rather different because of their time dependence and the non-linearity of their distributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.