Abstract

In this work, a novel multi-scale microstructure of Ti6Al4V duplex alloy with nano-sized β particles was designed based on powder metallurgy. The common lamellar structure was carefully adjusted to reveal the complex effects of microstructure on mechanical properties. The ideal microstructure transforms into a composition dominated by sparse equiaxed primary α, lots of β-nanoprecipitates, and traces of secondary acicular α′ by heat treatment. The uniform nucleation of nano-sized β particles, driven by intragranular element concentration difference and local distortions, is a pivotal reason for high yield strength by dispersion strengthening. More phase boundaries also act as sustainable sources for geometrically necessary dislocations. An uncoordinated phase interface relationship from variant selection improves strain-hardening ability. The intragranular misorientation causes the value inhomogeneity of the Schmid factor in primary α, resulting in an auxiliary slip effect that benefits ductility. Therefore, the fabricated Ti6Al4V alloy displays an ultrahigh ultimate tensile strength of 1329 MPa, yield strength of 1223 MPa, and reasonably large elongation of 8.5 %, respectively. This work underscores the intricate interplay of microstructure evolution and deformation mechanisms in powder metallurgy duplex titanium alloys, offering valuable insights into enhancing the mechanical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call